

Electronics Merit Badge

Class 1

Equipment Used

Volt/Ohm/Amp Meter or Multimeter
Usually referred to as meter.
With this we can measure current,
voltage and resistance.

Oscilloscope

Usually referred to as <u>scope</u>. With this we can 'see' voltages. This is very useful when voltage is changing, as a meter is no good to us when this is happening.

Computer

<u>Computers</u> are used heavily for research, for drawing schematics, for writing programs, for assisting in fixing broken circuits, etc...

Frequency Generator

Frequency Counter

Circuit Boards

Two of the most important kinds of equipment

Your Brain

A brain assistant.

Safety with Electricity and Electronics

Electricity Safety

 High Voltage (<u>120V AC or greater</u>) – Safety mainly about not touching the wrong thing.

- <u>Current kills</u> Only <u>16</u> volts can kill when enough electrons flow through the heart or head.
- Ventricular fibrillation Electrons passing through the heart causes muscles to seize, causing death.
- If the shock doesn't kill you, you can still be badly burned from touching the wrong thing.

How to avoid shock.

- Turn power off before working on equipment.
- Don't touch circuits that could have high voltage on them.

 Do not allow electrons to flow through the heart. I don't think the snake knew about this detail.

Electronics Safety

- Electronics generally uses lower voltages (less than 48 volts). You are usually working with DC voltage instead of AC voltage.
- You are usually more concerned with sparks from connecting the wrong wires together, or burning yourself with a soldering iron, or some similar event.
- Even when working with lower voltages, you may still receive an electrical shock from equipment you are using.

Personal Safety

- Be aware of what you are doing, and where you are placing equipment and yourself.
- Pay attention to hot soldering irons. Keep a good distance between you those next to you.
- Know when you are working with high current and/or high voltage circuits.
- THINK before you do something.
- Wear safety glasses when soldering.

Types of Electricity

Static Electricity

Static electricity is usually created when materials are pulled apart or rubbed together, causing positive (+) charges to collect on one material and negative (-) charges on the other surface.. Sparks may result!

Examples of static electricity:

- 1. Lightning.
- 2. Combing hair.
- Walking across carpet and getting shocked.
- 4. Pulling out scotch tape.

Generation Of Static Electric

10

Types of Electricity

Alternating Current (AC)

The common form of electricity from power plant to home/office. Its direction is reversed 60 times per second in the U.S.; 50 times in Europe.

Examples of AC usage:

- 1. Kitchens: Stoves, ovens, mixer, etc.
- Computers (the plug)
- Lights in house
- Home air conditioners.

Types of Electricity

Direct Current (DC)

Type of electricity used in most electronics we have today. Current only flows in one direction (not both directions, like AC).

Examples of DC usage:

- 1. MP3 players
- 2. Radios
- 3. Electricity in cars.
- Anywhere you use a battery for power.

Basics of Electronics

Current: Defined as "flow of electrons".

- Current: Units of current is AMPS.
- Current: <u>Electrical symbol for current is I</u> (eye).

Current Flow – Water Analogy

- 1. Water flows in the hose, entering at the top and exiting the bottom.
- 2. The water is the "current"; the flow of electrons.
- 3. The more water flowing in the pipe, the more electrons are flowing in the wire.
- 4. Different pipe diameters illustrates different resistance to water flow, which correlates to different resistor values.

Voltage

- Volts is the <u>electrical force</u> that causes electrons (current) to flow.
- Voltage can also be thought of as the <u>electrical</u> <u>pressure that pushes electrons in a wire</u>.
- Units for voltage is <u>VOLTS</u>.
- The symbol for voltage is <u>E</u>.
- The schematic symbol for voltage is generally shown as a battery

Voltage – Water Analogy

Small height = low voltage

- 1. Gravity provides the force for water (current) to flow.
- 2. This illustrates a small voltage, so electron flow is small.

Big height = high voltage

- 1. Gravity provides the force for water (current) to flow.
- 2. This illustrates a larger voltage, so electron flow is larger.

Resistance

- Resistance is the electrical property of a substance to resist the flow of electrons (current).
- The units for resistance is OHMS (Ω) .
- The symbol for resistance is <u>R</u>.
- The schematic symbol is —————
- The larger the resistance, the more resistance to current.

Resistance – Water Analogy

- Different pipe diameters represents different resistor values.
- The smaller the diameter of the pipe, the larger the resistance.

Power – Water Analogy

In electronics, power is equal to current X voltage.
The units for power is WATTS.
The symbol for power is W.

In our water analogy, power is equal to water flow X pressure.

You can see from the picture that more water flow will mean more force, and more pressure will mean more force.

Ohms Law

- $V = I \times R$: Volts = Current x Resistance
- Units
 - Volts is in volts
 - Current is in amps
 - Resistance is in ohms

Electronic Symbols

Single Pole, Double Throw Switch (SPDT)

Battery

Capacitor

Resistor

Light Emitting Diode (LED)

Buzzer

Fuse

Lamp

21

CIRCUIT DIAGRAM (SCHEMATIC)

FLASHLIGHT

TWO GROUND SYMBOLS IS THE SAME AS CONNECTING WITH A WIRE

GROUND = 0 VOLTS

CIRCUIT CONNECTION BOX

Wire circuit to use switch to turn on lamp.

CIRCUIT CONNECTION BOX

Wire circuit to use switch to turn on lamp AND buzzer.

LAMP

BUZZER

24

